Opposite braces and their applications

Alan Koch

Agnes Scott College

May 28, 2019

Alan Koch (Agnes Scott College)

< ロ > < 同 > < 回 > < 回 >

Joint work with:

Pa Tru

æ

・ロト ・ 四ト ・ ヨト ・ ヨト

Background

2 The Opposite Brace

3 Applications

Self-Opposite Braces

Open Questions

イロト イヨト イヨト イヨト

A *set-theoretic solution* to the Yang-Baxter equation is a set *B* and a function $R : B \times B \rightarrow B \times B$ such that

 $R_{12}R_{23}R_{12} = R_{23}R_{12}R_{23}$

holds, where $R_{ij} : B \times B \times B \to B \times B \times B$ is *R* applied to the *i*th and *j*th factors.

Example

Let *B* be any set, and $R(x, y) = (y, x), x, y \in B$.

$$\begin{aligned} &R_{12}R_{23}R_{12}(x,y,z)=R_{12}R_{23}(y,x,z)=R_{12}(y,z,x)=(z,y,x)\\ &R_{23}R_{12}R_{23}(x,y,z)=R_{23}R_{12}(x,z,y)=R_{23}(z,x,y)=(z,y,x). \end{aligned}$$

Example

Let *B* be any group, $R(x, y) = (y, y^{-1}xy)$.

$$\begin{aligned} R_{12}R_{23}R_{12}(x,y,z) &= R_{12}R_{23}(y,y^{-1}xy,z) \\ &= R_{12}(y,z,z^{-1}y^{-1}xyz) \\ &= (z,z^{-1}yz,z^{-1}y^{-1}xyz) \\ R_{23}R_{12}R_{23}(x,y,z) &= R_{23}R_{12}(x,z,z^{-1}yz) \\ &= R_{23}(z,z^{-1}xz,z^{-1}yz) \\ &= (z,z^{-1}yz,(z^{-1}yz)^{-1}z^{-1}xzz^{-1}yz) \\ &= (z,z^{-1}yz,z^{-1}y^{-1}xyz). \end{aligned}$$

Note that if *B* is abelian, then this is the previous example.

イロト イ理ト イヨト イヨト

$$R^{(1)}(x,y) = (y,x), \ R^{(2)}(x,y) = (y,y^{-1}xy)$$

Let *R* be a solution to the YBE, and write

$$R(x, y) = (\sigma_x(y), \sigma_y(x)).$$

We say R is:

- *non-degenerate* if $\sigma_x, \sigma_y : B \to B$ are bijections.
- *involutive* if $R^2 = 1_B$.

Both examples above are non-degenerate, $R^{(1)}$ is involutive, but

$$R^{(2)}(R^{(2)}(x,y)) = R^{(2)}(y,y^{-1}xy) = (y^{-1}xy,y^{-1}x^{-1}yxy),$$

so $R^{(2)}$ is not involutive unless B is abelian.

Skew left braces can be used to construct non-degenerate solutions to the YBE.

A skew left brace is a triple $\mathfrak{B} = (B, \cdot, \circ)$ where

- (B, ·) is a group: the inverse to x is x⁻¹ and we write x · y as xy unless it creates confusion.
- (B, \circ) is a group: the inverse to x is \overline{x} .
- For all x, y, z ∈ B the following identity holds, which we call the brace relation:

$$x \circ (yz) = (x \circ y)x^{-1}(x \circ z).$$

In this talk, we will abbreviate "skew left brace" with "brace".

Fact. The groups (B, \cdot) and (B, \circ) share the same identity 1_B .

There does not yet appear to be a uniform notation:

- Guarnieri and Vendramin, 2016 (arXiv): (B, \cdot, \circ) .
- Bachiller, 2016 (arXiv): (*B*, *, ·).
- Childs, 2017 (NYJM): (*G*, ·, ∘).
- Smoktunowicz, Vendramin, and Byott, 2017 (arXiv): (A, ·, ∘).
- Zenouz, 2018 (arXiv): (*B*, ⊕, ⊙).
- Vendramin, 2018 (arXiv): (*B*, +, •).
- Konovalov, Smoktunowicz, and Vendramin, 2018 (arXiv): (A, ∘, +), which puts the operations in reverse order.
- Childs, 2019 (arXiv): (G, ∘, ⋆) order of the operations irrelevant (bi-skew braces–coming tomorrow!).

$x \circ (yz) = (x \circ y)x^{-1}(x \circ z)$

Some examples:

- (B, \cdot) any group, $x \circ y = xy$. We call this "the" *trivial brace*.
- (B, ·) any group, $x \circ y = yx$. We call this "the" *almost trivial brace*.
- $(B, \cdot) = S_n, \ n \ge 4, \ \tau \in A_n, \ \tau^2 = 1,$ and

$$\sigma \circ \pi = \begin{cases} \sigma \pi & \sigma \in \mathbf{A}_{\mathbf{n}} \\ \sigma \tau \pi \tau & \sigma \notin \mathbf{A}_{\mathbf{n}} \end{cases}.$$

Note
$$(B, \circ) \cong S_n$$
.
• $(B, \cdot) = \langle r, s : r^4 = s^2 = rsrs = 1 \rangle \cong D_4$ with

$$x \circ y = \begin{cases} xy & x \text{ or } y \in \langle r \rangle \\ r^2 xy & x, y \notin \langle r \rangle \end{cases}$$

٠

Note $(B, \circ) \cong Q_8$.

Connection to the Yang-Baxter Equation

A brace $\mathfrak{B} = (B, \cdot, \circ)$ gives a non-degenerate set-theoretic solution to the YBE: for $x, y \in B$,

$$R_{\mathfrak{B}}(x,y) = \left(x^{-1}(x \circ y), \overline{x^{-1}(x \circ y)} \circ x \circ y\right).$$

Exercise: $R_{\mathfrak{B}}$ is involutive iff (B, \cdot) is abelian.

Example (trivial brace)

$$R_{\mathfrak{B}}(x,y)=(y,y^{-1}xy).$$

Example (almost trivial brace)

$$R_{\mathfrak{B}}(x,y)=(x^{-1}yx,y).$$

Hopf-Galois structures on Galois field extensions give braces, and conversely.

Let $(G, *_G)$ be the Galois group of an extension L/K, let $N \leq \text{Perm}(G)$ be regular and *G*-stable (i.e., normalized by conjugation by $\lambda(G) \leq \text{Perm}(G)$).

Let $a : N \to G$ be the bijection given by $a(\eta) = \eta[1_G]$.

Define, for $\eta, \pi \in N$,

$$\eta \circ \pi = a^{-1}(a(\eta) *_G a(\pi)).$$

Set B = N. Then $\mathfrak{B} := (B, \cdot, \circ)$ is a brace with $(B, \cdot) = N$, and $(B, \circ) \cong (G, *_G)$ via the isomorphism *a*.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Given $(G, *_G), (N, *_N)$ as above, let $(B, \circ) = (G, *_G)$ and define

$$g \cdot h = a(a^{-1}(g) *_N a^{-1}(h)).$$

Then $\mathfrak{B}_{alt} := (B, \cdot, \circ)$ is a brace with $(B, \circ) = (G, *_G)$, and $(B, \cdot) \cong (N, *_N)$ via the isomorphism a^{-1} .

In fact, the map $a: \mathfrak{B} \to \mathfrak{B}_{alt}$ is a brace isomorphism (bijection, preserves both operations).

The correspondence

{Hopf-Galois structures on L/K} \rightarrow {Braces (B, \cdot, \circ) with $(B, \circ) \cong G$ }

is surjective but not injective.

Given a regular, *G*-stable subgroup $N \leq \text{Perm}(G)$, denote its corresponding brace by $\mathfrak{B}(N)$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Background

2 The Opposite Brace

3 Applications

Self-Opposite Braces

Open Questions

Alan Koch (Agnes Scott College)

イロト イ理ト イヨト イヨト

Let L/K be Galois, group G.

Let $N \leq \text{Perm}(G)$ be regular and *G*-stable.

Then N induces a Hopf-Galois structure on L/K.

Additionally, let

$$N' = \operatorname{Cent}_{\operatorname{Perm}(G)}(N) = \{\eta' \in \operatorname{Perm}(G) : \eta'\eta = \eta\eta' \text{ for all } \eta \in N\}.$$

Then $N' \cong N$ is regular and *G*-stable, giving a HGS on L/K, different from the HGS that *N* gives if *N* is nonabelian.

Question. How do $\mathfrak{B}(N)$ and $\mathfrak{B}(N')$ compare?

Recall [Greither-Pareigis]: $N' = \{\phi_{\eta} : \eta \in N\}$, where $\eta[g] = \mu_g[\eta[1_G]]$ and $\mu_g \in N$ is uniquely determined by $\mu_g[1] = g$.

Also, $\phi_{\eta}\phi_{\pi} = \phi_{\pi\eta}$, and the map: $\eta \mapsto \phi_{\eta^{-1}} : N \to N'$ is an isomorphism.

Let $a' : N' \to G$ be the bijection $\phi_{\eta} \mapsto \phi_{\eta}[\mathbf{1}_G]$. Then

$$\mathbf{a}'(\phi_{\eta}) = \phi_{\eta}[\mathbf{1}_G] = \mu_{\mathbf{1}}[\eta[\mathbf{1}_G]] = \eta[\mathbf{1}_G] = \mathbf{a}(\eta).$$

イロト イ団ト イヨト イヨト

 $a'(\phi_{\eta}) = a(\eta)$

Then

$$\phi_{\eta} \circ' \phi_{\pi} := (a')^{-1} (a'(\phi_{\eta}) *_{G} a'(\phi_{\pi}))$$

= $(a')^{-1} (a(\eta) *_{G} a(\pi))$
= $(a')^{-1} (a(\eta \circ \pi))$
= $\phi_{\eta \circ \pi}$.

Then $\mathfrak{B}(N') = (N', \cdot_{N'}, \circ').$

By identifying N' with N via the bijection $\phi_{\eta} \mapsto \eta$, we see that $\mathfrak{B}(N') \cong (N, \cdot', \circ)$ where

$$\eta \cdot' \pi = \pi \eta.$$

크

イロト イ理ト イヨト イヨト

The opposite brace

Let $\mathfrak{B} = (B, \cdot, \circ)$ be any brace, and let

$$x \cdot y = yx.$$

Then $\mathfrak{B}' := (B, \cdot', \circ)$ is called the *opposite brace* to \mathfrak{B} .

Note: it is easy to show that the brace relation holds on \mathfrak{B}' .

< ロ > < 同 > < 回 > < 回 >

In March, 2019 I gave a different definition for \mathfrak{B}' , call it \mathfrak{B}^* .

 $\mathfrak{B}^* = (B, \cdot, \circ')$ where

$$x \circ' y = (x^{-1} \circ y^{-1})^{-1} = x(x^{-1} \circ y)x.$$

One can show that the map $B \to B$ given by $x \mapsto x^{-1}$ is an isomorphism of braces $\mathfrak{B}^* \to \mathfrak{B}'$.

The May opposite is an easier reformulation of the March opposite.

A (10) A (10)

- $(\mathfrak{B}')' \cong \mathfrak{B}.$
- If (B, \cdot) is abelian, $\mathfrak{B}' \cong \mathfrak{B}$.
- (B, \cdot') has the same identity and inverses as (B, \cdot) .
- If $\phi : \mathfrak{B}_1 \to \mathfrak{B}_2$ is a morphism of braces, then it is also a morphism $\mathfrak{B}'_1 \to \mathfrak{B}'_2$ of opposite braces since

$$\phi(\mathbf{x} \cdot \mathbf{y}) = \phi(\mathbf{y}\mathbf{x}) = \phi(\mathbf{y})\phi(\mathbf{x}) = \phi(\mathbf{x}) \cdot \mathbf{y}.$$

イロト イ押ト イヨト イヨト

Suppose $\mathfrak{B} = (B, \cdot, \cdot)$ is the trivial brace.

Then $\mathfrak{B}' = (B, \cdot', \cdot)$ is isomorphic to the almost trivial brace (B, \cdot, \cdot') by the inverse map $\iota : (B, \cdot, \cdot') \to (B, \cdot', \cdot), \ \iota(x) = x^{-1}$:

$$\iota(x \cdot y) = (x \cdot y)^{-1} = y^{-1} \cdot x^{-1} = \iota(x) \cdot \iota(y)$$
$$\iota(x \circ y) = \iota(y \cdot x) = (y \cdot x)^{-1} = x^{-1} \cdot y^{-1} = \iota(x) \circ \iota(y).$$

Note. The regular subgroups of Perm(G) which produce \mathfrak{B} and \mathfrak{B}' are $\lambda(G)$ and $\rho(G)$ respectively.

Background

2 The Opposite Brace

3 Applications

4 Self-Opposite Braces

Open Questions

Alan Koch (Agnes Scott College)

イロト イ理ト イヨト イヨト

If $\mathfrak{B}' \ncong \mathfrak{B}$, a brace now gives two set-theoretic solutions to the YBE:

$$\begin{aligned} \mathcal{R}_{\mathfrak{B}}(x,y) &= \left(x^{-1}(x\circ y), \overline{x^{-1}(x\circ y)}\circ x\circ y\right) \\ \mathcal{R}_{\mathfrak{B}'}(x,y) &= \left(x^{-1}\cdot (x\circ y), \overline{x^{-1}\cdot (x\circ y)}\circ x\circ y\right) \\ &= \left((x\circ y)x^{-1}, \overline{(x\circ y)x^{-1}}\circ x\circ y\right). \end{aligned}$$

・ロト ・ 同ト ・ ヨト ・ ヨ

$$R_{\mathfrak{B}}(x,y) = \left(x^{-1}(x \circ y), \overline{x^{-1}(x \circ y)} \circ x \circ y\right)$$

Example

Let \mathfrak{B} be the trivial brace.

Then:

$$R_{\mathfrak{B}}(x,y) = (y, y^{-1}xy)$$
$$R_{\mathfrak{B}'}(x,y) = (xyx^{-1}, x).$$

Note. In this example, $R_{\mathfrak{B}}^{-1} = R_{\mathfrak{B}'}$.

 $R_{\mathfrak{B}}(x,y) = \left(x^{-1}(x \circ y), \overline{x^{-1}(x \circ y)} \circ x \circ y\right)$

Example

$$(B,\cdot) = \langle r, s : r^4 = s^2 = rsrs = 1 \rangle \cong D_4$$
 with

$$x \circ y = \begin{cases} xy & x \text{ or } y \in \langle r \rangle \\ r^2 xy & x, y \notin \langle r \rangle \end{cases}$$

Then:

$$R_{\mathfrak{B}}(x,y) = \begin{cases} (y,y^{-1}xy) & x \in \langle r \rangle \text{ or } y \in \langle r \rangle \\ (r^2y,r^2y^{-1}xy) & x,y \notin \langle r \rangle \end{cases}$$
$$R_{\mathfrak{B}'}(x,y) = \begin{cases} (xyx^{-1},x) & x \in \langle r \rangle \text{ or } y \in \langle r \rangle \\ (r^2xyx^{-1},r^2x) & x,y \notin \langle r \rangle \end{cases}$$

Remark. It takes more work, but it can be shown that $R_{\mathfrak{B}}^{-1} = R_{\mathfrak{B}'}$.

,

.

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ ─ 臣

Recall
$$({\it B},\cdot)={\it S}_{\it n},\;n\geq$$
 4, $au\in {\it A}_{\it n},\; au^{2}=$ 1, and

$$\sigma \circ \pi = \begin{cases} \sigma \pi & \sigma \in \mathbf{A}_n \\ \sigma \tau \pi \tau & \sigma \notin \mathbf{A}_n \end{cases}$$

•

Suppose $\tau = (12)(34)$. Then

 $R_{\mathfrak{B}'}R_{\mathfrak{B}}((12),(123)) = R_{\mathfrak{B}'}((142),(24)) = ((24),(132))$

So $R_{\mathfrak{B}}^{-1} \neq R_{\mathfrak{B}'}$ in general.

Let L/K be Galois, group *G*, and suppose *H* is a Hopf algebra which acts on *L* such that L/K is a Hopf-Galois extension.

Then each sub-Hopf algebra of *H* corresponds to an intermediate field of L/K.

This assignment is injective, but not necessarily surjective [Greither-Pareigis].

Let $\mathfrak{B} = (B, \cdot, \circ)$ be the corresponding brace.

Last year, in Omaha, Lindsay discussed the image of this correspondence using "o-stable subgroups" of the \mathfrak{B} .

o-stable subgroups: What Lindsay did

A subgroup $C \leq (B, \cdot)$ is \circ -stable if, for all $c \in C, x \in B$,

$$(x \circ c)x^{-1} \in C.$$

A \circ -stable subgroup *C* of (B, \cdot) is also a subgroup of (B, \circ) , so (C, \cdot, \circ) is a sub-brace of \mathfrak{B} .

Sub-Hopf algebras, hence the intermediate fields obtained via H, are in 1-1 correspondence with \circ -stable subgroups.

・ 同 ト ・ ヨ ト ・ ヨ ト

A subgroup $D \leq (B, \cdot)$ is a *left ideal* if, for all $d \in D, x \in B$,

 $x^{-1}(x \circ d) \in D.$

A left ideal is also a subgroup of (B, \circ) , hence a sub-brace.

People seem to care about these–for example, there's a "YangBaxter" GAP package with commands such as LeftIdeals, which computes all of the left ideals of a given brace.

伺 ト イ ヨ ト イ ヨ ト

$(x \circ c)x^{-1} \in C, \ x^{-1}(x \circ d) \in D$

Clearly:

Proposition

C is a \circ -stable subgroup in \mathfrak{B} iff it is a left ideal in \mathfrak{B}' .

Wild idea.

If we were to re-define the brace corresponding to $(N, *_N) \leq \text{Perm}(G)$ to have dot operation

$$\eta \cdot \pi = \pi *_{\mathsf{N}} \eta$$

and the circle operation as before, then the left ideals would give the intermediate fields directly.

・ロト ・ 同ト ・ ヨト ・ ヨ

Background

2 The Opposite Brace

3 Applications

4 Self-Opposite Braces

Open Questions

Alan Koch (Agnes Scott College)

イロト イ理ト イヨト イヨト

We say $\mathfrak{B} = (B, \cdot, \circ)$ is *abelian* if (B, \cdot) is abelian. (Called a "left brace" in the literature.)

If \mathfrak{B} is abelian, then the identity map is an isomorphism $(B, \cdot) \to (B, \cdot')$ which respects \circ .

Hence $\mathfrak{B}' \cong \mathfrak{B}$.

More generally (i.e., \mathfrak{B} not necessarily abelian), whenever $\mathfrak{B}' \cong \mathfrak{B}$ we say \mathfrak{B} is *self-opposite*.

If \mathfrak{B} is self-opposite:

- Only one solution to YBE.
- Intermediate fields found using left ideals.

Question. Are there non-abelian self-opposite braces?

Let (G, \cdot) be any group.

Let $B = G \times G$ and define

$$(x_1, x_2) \circ (y_1, y_2) = (x_1y_1, y_2x_2).$$

It is easy to show (B, \cdot, \circ) is a brace and that

$$T: B \to B, \ T(x_1, x_2) = (x_2, x_1)$$

is a brace isomorphism $\mathfrak{B}' \to \mathfrak{B}$.

More generally, for any brace ${\mathfrak B}$ we have

$$(\mathfrak{B} imes \mathfrak{B}')' \cong \mathfrak{B}' imes \mathfrak{B} \cong \mathfrak{B} imes \mathfrak{B}'.$$

When is \mathfrak{B} self-opposite?

One strategy: compute Aut(B, \circ), and for each $\varphi \in$ Aut(B, \circ) determine whether $\varphi(xy) = \varphi(y)\varphi(x)$.

Example

For $n \ge 4$, $n \ne 6$, let $\mathfrak{B} = (B, \cdot, \circ)$ with $(B, \cdot) = S_n$ and

$$\sigma \circ \pi = \begin{cases} \sigma \pi & \sigma \in \mathbf{A}_n \\ \sigma \tau \pi \tau & \sigma \notin \mathbf{A}_n \end{cases}$$

All automorphisms of $(B, \circ) \cong S_n$ are inner. Let $\varphi(\sigma) = \gamma \sigma \gamma^{-1}, \ \gamma \in S_n$. Then

$$\begin{split} \varphi((123) \cdot (12)) &= \varphi((13)) = \gamma(13)\gamma^{-1} \\ \varphi((123)) \cdot' \varphi((12)) &= (\gamma(12)\gamma^{-1}) \cdot' (\gamma(123)\gamma^{-1}) \\ &= (\gamma(123)\gamma^{-1}) \cdot (\gamma(12)\gamma^{-1}) = \gamma(23)\gamma^{-1} \end{split}$$

so φ is not an isomorphism $\mathfrak{B} \to \mathfrak{B}'$ and \mathfrak{B} is not self-opposite.

We say $(x, y) \in B \times B$ is an *L-pair* of \mathfrak{B} if $x \circ y = xy$, equivalently, *y* is fixed by the bijection \mathcal{L}_x given by

$$\mathcal{L}_{x}(y)=x^{-1}(x\circ y).$$

Similarly, if $x \circ y = yx$ we call (x, y) an *R*-pair of \mathfrak{B} .

Clearly, an L-pair of \mathfrak{B} is an R-pair of \mathfrak{B}' and vice versa.

Thus, if \mathfrak{B} is self-opposite, $|\mathcal{L}| = |\mathcal{R}|$.

< 同 ト < 三 ト < 三 ト

An example

As before, let
$$(B,\cdot)=\langle r,s:r^4=s^2=rsrs=1
angle\cong D_4$$
 with

$$x \circ y = \begin{cases} xy & x \text{ or } y \in \langle r \rangle \\ r^2 xy & x, y \notin \langle r \rangle \end{cases}$$

•

<ロ><日><日><日</th>

Then $|\mathcal{L}| = 48$ (trivial computation).

What is $|\mathcal{R}|$?

•
$$r^i \circ r^j = r^{i+j} = r^j r^i$$
 for all i, j : 16 pairs
• $r^i \circ r^j s = r^{i+j} s = r^j s r^i$ iff i is even: 8 pairs
• $r^i s \circ r^j = r^{i-j} s = r^j r^i s$ iff j is even: 8 pairs
• $r^i s \circ r^j s = r^{2+i-j} = r^j s r^i s$ iff $i \neq j \pmod{2}$: 8 pairs.

So $|\mathcal{R}| = 40$ and \mathfrak{B} is not self-opposite.

크

Background

- 2 The Opposite Brace
- 3 Applications
- Self-Opposite Braces

5 Open Questions

イロト イ理ト イヨト イヨト

n – 1 Questions

Is there an elegant way to relate R_B and R_{B'}? Elegant: Given R_B(x, y) = (u, v), a nice formula to R_{B'}(x, y) in terms of u and v.
(Failed conjecture: R_{B'} = TR_BT, T(x, y) = (y, x).)

Best I have right now: $R_{\mathfrak{B}'}(x, y) = (u \circ v)x^{-1}, \overline{(u \circ v)x^{-1}} \circ u \circ v).$

- Can we develop "nice" necessary and sufficient conditions to determine whether B is self-opposite?
- Do Hopf Galois structures which correspond to self-opposite braces have interesting properties? (For example: if B is self-opposite, intermediate fields correspond to left ideals.)
- Is there any value to the "classic" definition of opposite, B*? Philosophically:

𝔅,𝔅': fix *G*, vary *N*. 𝔅,𝔅*: fix *N*, vary *G*. The construction of B' was motivated to understand the opposite HGS given by N'-specifically, the Hopf algebra structure of L[N']^G. What insight does B' give us?

We'll talk about this again on Thursday.

Thank you.

æ

イロト イヨト イヨト イヨト