Opposite braces and their applications

Alan Koch
Agnes Scott College

May 28, 2019

Joint work with:

Pa Tru

Outline

(1) Background
(2) The Opposite Brace
(3) Applications

4 Self-Opposite Braces
(5) Open Questions

Yang-Baxter Equation

A set-theoretic solution to the Yang-Baxter equation is a set B and a function $R: B \times B \rightarrow B \times B$ such that

$$
R_{12} R_{23} R_{12}=R_{23} R_{12} R_{23}
$$

holds, where $R_{i j}: B \times B \times B \rightarrow B \times B \times B$ is R applied to the $i^{\text {th }}$ and $j^{\text {th }}$ factors.

Example

Let B be any set, and $R(x, y)=(y, x), x, y \in B$.

$$
\begin{aligned}
& R_{12} R_{23} R_{12}(x, y, z)=R_{12} R_{23}(y, x, z)=R_{12}(y, z, x)=(z, y, x) \\
& R_{23} R_{12} R_{23}(x, y, z)=R_{23} R_{12}(x, z, y)=R_{23}(z, x, y)=(z, y, x) .
\end{aligned}
$$

$R_{12} R_{23} R_{12}=R_{23} R_{12} R_{23}$

Example

Let B be any group, $R(x, y)=\left(y, y^{-1} x y\right)$.

$$
\begin{aligned}
R_{12} R_{23} R_{12}(x, y, z) & =R_{12} R_{23}\left(y, y^{-1} x y, z\right) \\
& =R_{12}\left(y, z, z^{-1} y^{-1} x y z\right) \\
& =\left(z, z^{-1} y z, z^{-1} y^{-1} x y z\right) \\
R_{23} R_{12} R_{23}(x, y, z) & =R_{23} R_{12}\left(x, z, z^{-1} y z\right) \\
& =R_{23}\left(z, z^{-1} x z, z^{-1} y z\right) \\
& =\left(z, z^{-1} y z,\left(z^{-1} y z\right)^{-1} z^{-1} x z z^{-1} y z\right) \\
& =\left(z, z^{-1} y z, z^{-1} y^{-1} x y z\right)
\end{aligned}
$$

Note that if B is abelian, then this is the previous example.

$R^{(1)}(x, y)=(y, x), R^{(2)}(x, y)=\left(y, y^{-1} x y\right)$

Let R be a solution to the YBE, and write

$$
R(x, y)=\left(\sigma_{x}(y), \sigma_{y}(x)\right) .
$$

We say R is:

- non-degenerate if $\sigma_{X}, \sigma_{y}: B \rightarrow B$ are bijections.
- involutive if $R^{2}=1_{B}$.

Both examples above are non-degenerate, $R^{(1)}$ is involutive, but

$$
R^{(2)}\left(R^{(2)}(x, y)\right)=R^{(2)}\left(y, y^{-1} x y\right)=\left(y^{-1} x y, y^{-1} x^{-1} y x y\right),
$$

so $R^{(2)}$ is not involutive unless B is abelian.

(Skew left) braces

Skew left braces can be used to construct non-degenerate solutions to the YBE.

A skew left brace is a triple $\mathfrak{B}=(B, \cdot, \circ)$ where

- (B, \cdot) is a group: the inverse to x is x^{-1} and we write $x \cdot y$ as $x y$ unless it creates confusion.
- (B, \circ) is a group: the inverse to x is \bar{x}.
- For all $x, y, z \in B$ the following identity holds, which we call the brace relation:

$$
x \circ(y z)=(x \circ y) x^{-1}(x \circ z) .
$$

In this talk, we will abbreviate "skew left brace" with "brace".
Fact. The groups (B, \cdot) and (B, \circ) share the same identity 1_{B}.

Notation, notation

There does not yet appear to be a uniform notation:

- Guarnieri and Vendramin, 2016 (arXiv): (B, \cdot, \circ).
- Bachiller, 2016 (arXiv): ($B, \star, \cdot)$.
- Childs, 2017 (NYJM): (G, \cdot, \circ).
- Smoktunowicz, Vendramin, and Byott, 2017 (arXiv): (A, \cdot, \circ).
- Zenouz, 2018 (arXiv): (B, \oplus, \odot).
- Vendramin, 2018 (arXiv): ($B,+, \circ$).
- Konovalov, Smoktunowicz, and Vendramin, 2018 (arXiv): ($A, \circ,+$), which puts the operations in reverse order.
- Childs, 2019 (arXiv): (G,,\star) order of the operations irrelevant (bi-skew braces-coming tomorrow!).

$x \circ(y z)=(x \circ y) x^{-1}(x \circ z)$

Some examples:

- (B, \cdot) any group, $x \circ y=x y$. We call this "the" trivial brace.
- (B, \cdot) any group, $x \circ y=y x$. We call this "the" almost trivial brace.
- $(B, \cdot)=S_{n}, n \geq 4, \tau \in A_{n}, \tau^{2}=1$, and

$$
\sigma \circ \pi=\left\{\begin{array}{ll}
\sigma \pi & \sigma \in A_{n} \\
\sigma \tau \pi \tau & \sigma \notin A_{n}
\end{array} .\right.
$$

Note $(B, \circ) \cong S_{n}$.

- $(B, \cdot)=\left\langle r, s: r^{4}=s^{2}=r s r s=1\right\rangle \cong D_{4}$ with

$$
x \circ y= \begin{cases}x y & x \text { or } y \in\langle r\rangle \\ r^{2} x y & x, y \notin\langle r\rangle\end{cases}
$$

Note $(B, \circ) \cong Q_{8}$.

Connection to the Yang-Baxter Equation

A brace $\mathfrak{B}=(B, \cdot, \circ)$ gives a non-degenerate set-theoretic solution to the YBE: for $x, y \in B$,

$$
R_{\mathfrak{B}}(x, y)=\left(x^{-1}(x \circ y), \overline{x^{-1}(x \circ y)} \circ x \circ y\right) .
$$

Exercise: $R_{\mathfrak{B}}$ is involutive iff (B, \cdot) is abelian.

Example (trivial brace)

$$
R_{\mathfrak{B}}(x, y)=\left(y, y^{-1} x y\right) .
$$

Example (almost trivial brace)

$$
R_{\mathfrak{B}}(x, y)=\left(x^{-1} y x, y\right)
$$

Connection with Hopf-Galois theory

Hopf-Galois structures on Galois field extensions give braces, and conversely.

Let $\left(G, *_{G}\right)$ be the Galois group of an extension L / K, let $N \leq \operatorname{Perm}(G)$ be regular and G-stable (i.e., normalized by conjugation by $\lambda(G) \leq \operatorname{Perm}(G))$.

Let $a: N \rightarrow G$ be the bijection given by $a(\eta)=\eta[1 G]$.
Define, for $\eta, \pi \in N$,

$$
\eta \circ \pi=a^{-1}\left(a(\eta) *_{G} a(\pi)\right) .
$$

Set $B=N$. Then $\mathfrak{B}:=(B, \cdot, \circ)$ is a brace with $(B, \cdot)=N$, and $(B, \circ) \cong\left(G, *_{G}\right)$ via the isomorphism a.

Alternatively

Given $\left(G, *_{G}\right),\left(N, *_{N}\right)$ as above, let $(B, \circ)=\left(G, *_{G}\right)$ and define

$$
g \cdot h=a\left(a^{-1}(g) *_{N} a^{-1}(h)\right)
$$

Then $\mathfrak{B}_{\text {alt }}:=(B, \cdot, \circ)$ is a brace with $(B, \circ)=\left(G, *_{G}\right)$, and $(B, \cdot) \cong\left(N, *_{N}\right)$ via the isomorphism a^{-1}.

In fact, the map $a: \mathfrak{B} \rightarrow \mathfrak{B}_{\text {alt }}$ is a brace isomorphism (bijection, preserves both operations).

HGS give braces

The correspondence
$\{$ Hopf-Galois structures on $L / K\} \rightarrow\{$ Braces (B, \cdot, \circ) with $(B, \circ) \cong G\}$
is surjective but not injective.

Given a regular, G-stable subgroup $N \leq \operatorname{Perm}(G)$, denote its corresponding brace by $\mathfrak{B}(N)$.

Outline

(9) Background

(2) The Opposite Brace
(3) Applications

4 Self-Opposite Braces
(5) Open Questions

Motivation

Let L / K be Galois, group G.
Let $N \leq \operatorname{Perm}(G)$ be regular and G-stable.
Then N induces a Hopf-Galois structure on L / K.
Additionally, let

$$
N^{\prime}=\operatorname{Cent}_{\operatorname{Perm}(G)}(N)=\left\{\eta^{\prime} \in \operatorname{Perm}(G): \eta^{\prime} \eta=\eta \eta^{\prime} \text { for all } \eta \in N\right\}
$$

Then $N^{\prime} \cong N$ is regular and G-stable, giving a HGS on L / K, different from the HGS that N gives if N is nonabelian.

Question. How do $\mathfrak{B}(N)$ and $\mathfrak{B}\left(N^{\prime}\right)$ compare?

Comparing braces

Recall [Greither-Pareigis]: $N^{\prime}=\left\{\phi_{\eta}: \eta \in N\right\}$, where $\eta[g]=\mu_{g}\left[\eta\left[{ }^{1} G\right]\right]$ and $\mu_{g} \in N$ is uniquely determined by $\mu_{g}[1]=g$.

Also, $\phi_{\eta} \phi_{\pi}=\phi_{\pi \eta}$, and the map: $\eta \mapsto \phi_{\eta^{-1}}: N \rightarrow N^{\prime}$ is an isomorphism.

Let $a^{\prime}: N^{\prime} \rightarrow G$ be the bijection $\phi_{\eta} \mapsto \phi_{\eta}\left[1_{G}\right]$. Then

$$
a^{\prime}\left(\phi_{\eta}\right)=\phi_{\eta}\left[1_{G}\right]=\mu_{1}\left[\eta\left[1_{G}\right]\right]=\eta\left[1_{G}\right]=a(\eta)
$$

$a^{\prime}\left(\phi_{\eta}\right)=a(\eta)$

Then

$$
\begin{aligned}
\phi_{\eta} \circ^{\prime} \phi_{\pi}: & =\left(a^{\prime}\right)^{-1}\left(a^{\prime}\left(\phi_{\eta}\right) *_{G} a^{\prime}\left(\phi_{\pi}\right)\right) \\
& =\left(a^{\prime}\right)^{-1}\left(a(\eta) *_{G} a(\pi)\right) \\
& =\left(a^{\prime}\right)^{-1}(a(\eta \circ \pi)) \\
& =\phi_{\eta \circ \pi} .
\end{aligned}
$$

Then $\mathfrak{B}\left(N^{\prime}\right)=\left(N^{\prime}, \cdot N^{\prime}, \circ^{\prime}\right)$.

By identifying N^{\prime} with N via the bijection $\phi_{\eta} \mapsto \eta$, we see that $\mathfrak{B}\left(N^{\prime}\right) \cong\left(N, .^{\prime}, \circ\right)$ where

$$
\eta \cdot^{\prime} \pi=\pi \eta
$$

The opposite brace

Let $\mathfrak{B}=(B, \cdot, \circ)$ be any brace, and let

$$
x \cdot^{\prime} y=y x
$$

Then $\mathfrak{B}^{\prime}:=\left(B, r^{\prime}, \circ\right)$ is called the opposite brace to \mathfrak{B}.

Note: it is easy to show that the brace relation holds on \mathfrak{B}^{\prime}.

Historical note

In March, 2019 I gave a different definition for \mathfrak{B}^{\prime}, call it \mathfrak{B}^{*}.
$\mathfrak{B}^{*}=\left(B, \cdot, o^{\prime}\right)$ where

$$
x \circ^{\prime} y=\left(x^{-1} \circ y^{-1}\right)^{-1}=x\left(x^{-1} \circ y\right) x
$$

One can show that the map $B \rightarrow B$ given by $x \mapsto x^{-1}$ is an isomorphism of braces $\mathfrak{B}^{*} \rightarrow \mathfrak{B}^{\prime}$.

The May opposite is an easier reformulation of the March opposite.

Some properties

- $\left(\mathfrak{B}^{\prime}\right)^{\prime} \cong \mathfrak{B}$.
- If (B, \cdot) is abelian, $\mathfrak{B}^{\prime} \cong \mathfrak{B}$.
- $\left(B, .^{\prime}\right)$ has the same identity and inverses as (B, \cdot).
- If $\phi: \mathfrak{B}_{1} \rightarrow \mathfrak{B}_{2}$ is a morphism of braces, then it is also a morphism $\mathfrak{B}_{1}^{\prime} \rightarrow \mathfrak{B}_{2}^{\prime}$ of opposite braces since

$$
\phi\left(x \cdot^{\prime} y\right)=\phi(y x)=\phi(y) \phi(x)=\phi(x) \cdot^{\prime} \phi(y)
$$

A simple example

Suppose $\mathfrak{B}=(B, \cdot, \cdot)$ is the trivial brace.

Then $\mathfrak{B}^{\prime}=\left(B, .^{\prime}, \cdot\right)$ is isomorphic to the almost trivial brace $\left(B, \cdot .^{\prime}\right)$ by the inverse map $\iota:\left(B, \cdot, .^{\prime}\right) \rightarrow\left(B,,^{\prime}, \cdot\right), \iota(x)=x^{-1}$:

$$
\begin{aligned}
& \iota(x \cdot y)=(x \cdot y)^{-1}=y^{-1} \cdot x^{-1}=\iota(x) \cdot^{\prime} \iota(y) \\
& \iota(x \circ y)=\iota(y \cdot x)=(y \cdot x)^{-1}=x^{-1} \cdot y^{-1}=\iota(x) \circ \iota(y)
\end{aligned}
$$

Note. The regular subgroups of $\operatorname{Perm}(G)$ which produce \mathfrak{B} and \mathfrak{B}^{\prime} are $\lambda(G)$ and $\rho(G)$ respectively.

Outline

(9) Background
 (2) The Opposite Brace

(3) Applications

4 Self-Opposite Braces

(5) Open Questions

Application \#1: Back to YBE

If $\mathfrak{B}^{\prime} \neq \mathfrak{B}$, a brace now gives two set-theoretic solutions to the YBE:

$$
\begin{aligned}
R_{\mathfrak{B}}(x, y) & =\left(x^{-1}(x \circ y), \overline{x^{-1}(x \circ y)} \circ x \circ y\right) \\
R_{\mathfrak{B}^{\prime}}(x, y) & =\left(x^{-1} \cdot^{\prime}(x \circ y), \overline{x^{-1} \cdot^{\prime}(x \circ y)} \circ x \circ y\right) \\
& =\left((x \circ y) x^{-1}, \overline{(x \circ y) x^{-1}} \circ x \circ y\right) .
\end{aligned}
$$

$$
R_{\mathfrak{B}}(x, y)=\left(x^{-1}(x \circ y), \overline{x^{-1}(x \circ y)} \circ x \circ y\right)
$$

Example

Let \mathfrak{B} be the trivial brace.
Then:

$$
\begin{aligned}
R_{\mathfrak{B}}(x, y) & =\left(y, y^{-1} x y\right) \\
R_{\mathfrak{B}^{\prime}}(x, y) & =\left(x y x^{-1}, x\right)
\end{aligned}
$$

Note. In this example, $R_{\mathfrak{B}}^{-1}=R_{\mathfrak{B}^{\prime}}$.

$$
R_{\mathfrak{B}}(x, y)=\left(x^{-1}(x \circ y), \overline{x^{-1}(x \circ y)} \circ x \circ y\right)
$$

Example

$(B, \cdot)=\left\langle r, s: r^{4}=s^{2}=r s r s=1\right\rangle \cong D_{4}$ with

$$
x \circ y= \begin{cases}x y & x \text { or } y \in\langle r\rangle \\ r^{2} x y & x, y \notin\langle r\rangle\end{cases}
$$

Then:

$$
\begin{aligned}
& R_{\mathfrak{B}}(x, y)=\left\{\begin{array}{cc}
\left(y, y^{-1} x y\right) & x \in\langle r\rangle \text { or } y \in\langle r\rangle \\
\left(r^{2} y, r^{2} y^{-1} x y\right) & x, y \notin\langle r\rangle
\end{array},\right. \\
& R_{\mathfrak{B}^{\prime}}(x, y)=\left\{\begin{array}{cc}
\left(x y x^{-1}, x\right) & x \in\langle r\rangle \text { or } y \in\langle r\rangle \\
\left(r^{2} x y x^{-1}, r^{2} x\right) & x, y \notin\langle r\rangle
\end{array} .\right.
\end{aligned}
$$

Remark. It takes more work, but it can be shown that $R_{\mathfrak{B}}^{-1}=R_{\mathfrak{B}^{\prime}}$.

But...

Recall $(B, \cdot)=S_{n}, n \geq 4, \tau \in A_{n}, \tau^{2}=1$, and

$$
\sigma \circ \pi= \begin{cases}\sigma \pi & \sigma \in A_{n} \\ \sigma \tau \pi \tau & \sigma \notin A_{n}\end{cases}
$$

Suppose $\tau=(12)(34)$. Then

$$
R_{\mathfrak{B}^{\prime}} R_{\mathfrak{B}}((12),(123))=R_{\mathfrak{B}^{\prime}}((142),(24))=((24),(132))
$$

So $R_{\mathfrak{B}}^{-1} \neq R_{\mathfrak{B}^{\prime}}$ in general.

Application \#2: Back to HGS

Let L / K be Galois, group G, and suppose H is a Hopf algebra which acts on L such that L / K is a Hopf-Galois extension.

Then each sub-Hopf algebra of H corresponds to an intermediate field of L / K.

This assignment is injective, but not necessarily surjective [Greither-Pareigis].

Let $\mathfrak{B}=(B, \cdot, \circ)$ be the corresponding brace.

Last year, in Omaha, Lindsay discussed the image of this correspondence using "o-stable subgroups" of the \mathfrak{B}.

o-stable subgroups: What Lindsay did

A subgroup $C \leq(B, \cdot)$ is o-stable if, for all $c \in C, x \in B$,

$$
(x \circ c) x^{-1} \in C .
$$

A o-stable subgroup C of (B, \cdot) is also a subgroup of (B, \circ), so (C, \cdot, \circ) is a sub-brace of \mathfrak{B}.

Sub-Hopf algebras, hence the intermediate fields obtained via H, are in 1-1 correspondence with o-stable subgroups.

Left ideals: What Bachiller did

A subgroup $D \leq(B, \cdot)$ is a left ideal if, for all $d \in D, x \in B$,

$$
x^{-1}(x \circ d) \in D
$$

A left ideal is also a subgroup of (B, \circ), hence a sub-brace.

People seem to care about these-for example, there's a "YangBaxter" GAP package with commands such as Leftldeals, which computes all of the left ideals of a given brace.
$(x \circ c) x^{-1} \in C, x^{-1}(x \circ d) \in D$

Clearly:

Proposition

C is a o-stable subgroup in \mathfrak{B} iff it is a left ideal in \mathfrak{B}^{\prime}.

Wild idea.

If we were to re-define the brace corresponding to $\left(N, *_{N}\right) \leq \operatorname{Perm}(G)$ to have dot operation

$$
\eta \cdot \pi=\pi * N \eta
$$

and the circle operation as before, then the left ideals would give the intermediate fields directly.

Outline

(9) Background
 (2) The Opposite Brace

(3) Applications

4 Self-Opposite Braces
(5) Open Questions

Abelian case

We say $\mathfrak{B}=(B, \cdot, \circ)$ is abelian if (B, \cdot) is abelian. (Called a "left brace" in the literature.)

If \mathfrak{B} is abelian, then the identity map is an isomorphism $(B, \cdot) \rightarrow\left(B, \cdot^{\prime}\right)$ which respects \circ.

Hence $\mathfrak{B}^{\prime} \cong \mathfrak{B}$.
More generally (i.e., \mathfrak{B} not necessarily abelian), whenever $\mathfrak{B}^{\prime} \cong \mathfrak{B}$ we say \mathfrak{B} is self-opposite.

If \mathfrak{B} is self-opposite:
(1) Only one solution to YBE.
(2) Intermediate fields found using left ideals.

Question. Are there non-abelian self-opposite braces?

Yes.

Let (G, \cdot) be any group.
Let $B=G \times G$ and define

$$
\left(x_{1}, x_{2}\right) \circ\left(y_{1}, y_{2}\right)=\left(x_{1} y_{1}, y_{2} x_{2}\right)
$$

It is easy to show (B, \cdot, \circ) is a brace and that

$$
T: B \rightarrow B, T\left(x_{1}, x_{2}\right)=\left(x_{2}, x_{1}\right)
$$

is a brace isomorphism $\mathfrak{B}^{\prime} \rightarrow \mathfrak{B}$.
More generally, for any brace \mathfrak{B} we have

$$
\left(\mathfrak{B} \times \mathfrak{B}^{\prime}\right)^{\prime} \cong \mathfrak{B}^{\prime} \times \mathfrak{B} \cong \mathfrak{B} \times \mathfrak{B}^{\prime}
$$

When is \mathfrak{B} self-opposite?

One strategy: compute $\operatorname{Aut}(B, \circ)$, and for each $\varphi \in \operatorname{Aut}(B, \circ)$ determine whether $\varphi(x y)=\varphi(y) \varphi(x)$.

Example

For $n \geq 4, n \neq 6$, let $\mathfrak{B}=(B, \cdot, \circ)$ with $(B, \cdot)=S_{n}$ and

$$
\sigma \circ \pi=\left\{\begin{array}{ll}
\sigma \pi & \sigma \in A_{n} \\
\sigma \tau \pi \tau & \sigma \notin A_{n}
\end{array} .\right.
$$

All automorphisms of $(B, \circ) \cong S_{n}$ are inner. Let $\varphi(\sigma)=\gamma \sigma \gamma^{-1}, \gamma \in S_{n}$. Then

$$
\begin{aligned}
\varphi((123) \cdot(12)) & =\varphi((13))=\gamma(13) \gamma^{-1} \\
\varphi((123)) \cdot^{\prime} \varphi((12)) & =\left(\gamma(12) \gamma^{-1}\right) \cdot^{\prime}\left(\gamma(123) \gamma^{-1}\right) \\
& =\left(\gamma(123) \gamma^{-1}\right) \cdot\left(\gamma(12) \gamma^{-1}\right)=\gamma(23) \gamma^{-1}
\end{aligned}
$$

so φ is not an isomorphism $\mathfrak{B} \rightarrow \mathfrak{B}^{\prime}$ and \mathfrak{B} is not self-opposite.

Self opposite investigation: L-pairs and R-pairs

We say $(x, y) \in B \times B$ is an L-pair of \mathfrak{B} if $x \circ y=x y$, equivalently, y is fixed by the bijection \mathcal{L}_{X} given by

$$
\mathcal{L}_{x}(y)=x^{-1}(x \circ y)
$$

Similarly, if $x \circ y=y x$ we call (x, y) an R-pair of \mathfrak{B}.

Clearly, an L-pair of \mathfrak{B} is an R-pair of \mathfrak{B}^{\prime} and vice versa.

Thus, if \mathfrak{B} is self-opposite, $|\mathcal{L}|=|\mathcal{R}|$.

An example

As before, let $(B, \cdot)=\left\langle r, s: r^{4}=s^{2}=r s r s=1\right\rangle \cong D_{4}$ with

$$
x \circ y= \begin{cases}x y & x \text { or } y \in\langle r\rangle \\ r^{2} x y & x, y \notin\langle r\rangle\end{cases}
$$

Then $|\mathcal{L}|=48$ (trivial computation).
What is $|\mathcal{R}|$?

- $r^{i} \circ r^{j}=r^{i+j}=r^{j} r^{i}$ for all $i, j: 16$ pairs
- $r^{i} \circ r^{j} s=r^{i+j} s=r^{j} s r^{i}$ iff i is even: 8 pairs
- $r^{i} s \circ r^{j}=r^{i-j} s=r^{j} r^{i} s$ iff j is even: 8 pairs
- $r^{i} s \circ r^{j} s=r^{2+i-j}=r^{j} s r^{i} s$ iff $i \not \equiv j(\bmod 2)$: 8 pairs.

So $|\mathcal{R}|=40$ and \mathfrak{B} is not self-opposite.

Outline

(1) Background

(2) The Opposite Brace
(3) Applications

4 Self-Opposite Braces
(5) Open Questions

$n-1$ Questions

(1) Is there an elegant way to relate $R_{\mathfrak{B}}$ and $R_{\mathfrak{B}^{\prime}}$?

Elegant: Given $R_{\mathfrak{B}}(x, y)=(u, v)$, a nice formula to $R_{\mathfrak{B}^{\prime}}(x, y)$ in terms of u and v.
(Failed conjecture: $R_{\mathfrak{B}^{\prime}}=T R_{\mathfrak{B}} T, T(x, y)=(y, x)$.)
Best I have right now: $\left.R_{\mathfrak{B}^{\prime}}(x, y)=(u \circ v) x^{-1}, \overline{(u \circ v) x^{-1}} \circ u \circ v\right)$.
(2) Can we develop "nice" necessary and sufficient conditions to determine whether \mathfrak{B} is self-opposite?
(3) Do Hopf Galois structures which correspond to self-opposite braces have interesting properties?
(For example: if \mathfrak{B} is self-opposite, intermediate fields correspond to left ideals.)
(4) Is there any value to the "classic" definition of opposite, \mathfrak{B}^{*} ? Philosophically:

$$
\begin{aligned}
& \mathfrak{B}, \mathfrak{B}^{\prime}: \text { fix } G, \text { vary } N . \\
& \mathfrak{B}, \mathfrak{B}^{*}: \text { fix } N \text {, vary } G .
\end{aligned}
$$

Last question

(- The construction of \mathfrak{B}^{\prime} was motivated to understand the opposite HGS given by N^{\prime}-specifically, the Hopf algebra structure of $L\left[N^{\prime}\right]^{G}$. What insight does \mathfrak{B}^{\prime} give us?

We'll talk about this again on Thursday.

Thank you.

